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Formulae for di!erential and total scattering cross-sections per unit volume of a medium
have been derived using the von KaH rmaH n correlation function of medium inhomogeneities.
The scattering cross-sections have been studied in terms of their dependence on the mean
scale of inhomogeneities in comparison to the wavelength, and also on the parameter l of the
von KaH rmaH n correlation function. It has been shown that the e!ective medium acoustic
refractive index does not depend on the form of its #uctuations correlation function if the
mean scale of inhomogeneities is large in comparison to the wavelength of acoustic waves,
and if the Bourret approximation for the e!ective wave number operator is used.
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1. INTRODUCTION

Problems connected with elastic wave propagation in randomly inhomogeneous media
have been intensively studied in the last years [1]. This is due to a large extent to their
wide-ranging applications in various branches of science: acoustics, biophysics, optics,
geophysics, hydroacoustics, physics of the atmosphere, etc. [2, 3]. The scattering of
acoustics waves by medium inhomogeneities and interferences of the primary wave with the
scattered waves, as well as interferences between the scattered waves, cause stochastic
changes of the amplitude and phase of the wave, and changes in the e!ective velocity of
wave propagation [4}6] as well as in the character of wave energy transport.

The character of wave energy transport in random media depends on the value of the
mean free path l of the wave in comparison with the distance travelled by the wave [1, 7, 8].
The mean free path of the wave has been de"ned by Sornette [1] as the reciprocal of the
total scattering cross-section per unit volume of the medium. Three di!erent regimes of
wave energy transport in randomly inhomogeneous media can be distinguished: wave
transport of energy with e!ective wave velocity, c(u), di!erent from velocity in an
homogeneous medium [1], di!usive transport of wave energy, and the regime of wave
energy localization. The wave energy transport is propagative if the distance travelled by
the wave is smaller than the elastic mean free path l of the wave. In the case of distances
travelled by the wave being larger than l, the character of energy propagation is di!usive
with a coe$cient of di!usion D

0
"c(u) l (u)/3 [1, 9], where u denotes the cyclic frequency

of the wave. In strongly inhomogeneous media the so-called Anderson localization of wave
energy can take place [7}11] provided the Io!e}Regel condition j+l is ful"lled. The
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Anderson wave energy localization is caused by the coherent interferences of waves
scattered backwards at an angle of 1803. These interferences cause the di!usion coe$cient of
the wave energy to decrease to zero.

This work is devoted to studies of the acoustic waves scattering by turbulent media in
which the correlation of #uctuations in the acoustic refractive index is described by the von
KaH rmaH n function. The in#uence of other forms of correlation functions on the e!ective
acoustic refractive index of a medium has also been studied using the Green function
method and the Bourret approximation for calculation of the e!ective wave number
operator.

2. STATISTICAL CHARACTERISTICS OF RANDOMLY INHOMOGENEOUS MEDIA

The acoustical properties of a random medium can be characterized by the mean-square
#uctuations Se2T of the medium acoustic refractive index and by the autocorrelation
function [2] of these #uctuations Se(x, t)e(x#r, t)T, where the bracket S T denotes
averaging over statistical ensembles. The refractive index is de"ned by n"c

0
/c"1#e,

where c
0
is a reference wave speed, c is the acoustic wave speed, and e denotes the #uctuating

part of the refractive index. In the following analysis, it is assumed that the "eld is
a temporally stationary and spatially homogeneous one. In this case, the autocorrelation
function is a function of the magnitude of r only and can be written as :

0
Se(o)e (r)T. If the

inhomogeneities in a medium are caused by turbulence, correlation between the
inhomogeneties is described by the von KaH rmaH n [5, 12, 18] function W (r),

W (r)"
Se2T

2l~1C(l) A
r

aB
l
Kl A

r

aB , (1)

where C (l) denotes the Euler gamma function, l is a number (the parameter of the von
KaH rmaH n function) and a denotes the radius of correlation of inhomogeneities, i.e., the mean
distance over which #uctuations in the acoustic refractive index are correlated. Kl (r/a) is
a Bessel function of second kind of imaginary argument.

In considerations of elastic waves propagation in random media, the Fourier transform
U(i) of the correlation function W (r) is also needed:

U(i)"
1

(2n)3 P
=

~=
P

=

~=
P

=

~=

W(r) e*jr d3 r. (2)

In isotropic turbulent media formula (2), after introducing a spherical co-ordinate system
and integration over the angles, takes the form

U(i)"
1

2n2i P
=

0

sin (ir)W(r) r dr, (3)

and one obtains the following formula for the Fourier transform of the von KaH rmaH n
function [12, 13]:

U(i)"
Se2TC(l#3/2) a3

n3@2C (l)(1#i2a2)l`3@2
. (4)
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3. THE DIFFERENTIAL SCATTERING CROSS-SECTION PER UNIT VOLUME
OF A RANDOM MEDIUM

The di!erential scattering cross-section is de"ned as the ratio of wave energy #ux
scattered by unit volume of a medium per unit solid angle in the direction H, to the incident
energy #ux per unit surface area [2, 13, 14]. In the case of acoustic waves, the di!erential
scattering cross-section of unit volume of a randomly inhomogeneous medium is given by
the formula [2, 15]

p(H)"2nk4U(2k sin(H/2)) cos2H, (5)

where k"u/c
0

is the wave number, H is the scattering angle and U denotes the Fourier
transform of the correlation function of the inhomogeneities. From formulae (4) and (5) the
following expression for the di!erential scattering cross-section is obtained:

p (H)"
2Se2TC (l#3/2) k4a3 cos2 H

n1@2C (l)(1#4k2a2 sin2(H/2))l`3@2
. (6)

In Figure 1, plots of the above formula have been presented as a function of ka, for
various values of angle H and l"1

3
, normalized to the average value of the square of the

refractive index #uctuations Se2T. The normalization has been introduced because there is
little data on values of Se2T in the literature. (The only values the authors have identi"ed are
to be found in references [14, p. 235, 16, p. 7]). The value l"1

3
has been chosen, because this

value is often quoted in the literature, for example [5, p. 18, 13, p. 40]. One can see from
Figure 1, that p (H)a/Se2T depends weakly on the scattering angle H for ka(1, while for
ka'1 the dependence is strong. The value of p (H)a/Se2T decreases with increasing
scattering angle H in the range 03(H(903, and it increases as the scattering angle further
Figure 1. Di!erential scattering cross-section per unit volume of a turbulent medium, normalized to the average
value of the square of the refractive index #uctuations, for a von KaH rmaH n correlation function with l"1/3 and
various values of scattering angle.



Figure 2. Di!erential scattering cross-section per unit volume of a turbulent medium normalized to the average
value of the square of the refractive index #luctuations, as a function of scattering angle for a von KaH rmaH n
correlation function with l"1

3
, and for various values of the acoustic radius, ka.

Figure 3. Di!erential scattering cross-section per unit volume of a turbulent medium, normalized to the average
value of the square of the refractive index #uctuations, as a function of the parameter l of the von KaH rmaH n
correlation function, for various scattering angles and ka"10.
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increases in the range 903(H(1803, as can be seen in Figure 2. Values of p (h)a/Se2T
increase as the parameter, l, of the von KaH rmaH n correlation function increases, for small
scattering angles H, and decreases for larger scattering angles, as can be seen from Figure 3.
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4. THE TOTAL ACOUSTIC SCATTERING CROSS-SECTION PER UNIT VOLUME
OF A TURBULENT MEDIUM

The total scattering cross-section per unit volume of a turbulent medium (which was
de"ned in section 2 as the reciprocal of the mean-free path of the wave) is obtained by
integrating the di!erential scattering cross-section over the solid angle 4n. Introducing the
wave number of the scattered wave k

s
"2k sin(H/2), an element of solid angle dX"

sin H dH d/ can be written as a function of k
s
: dX"k

s
dk

s
d//k2 and equation (5) takes the

form

p (k
s
)"2nk4 A1!

k2
s

k2
#

k4
s

4k4B U(k
s
), (7)

while the total scattering cross-section is

p
s
"

2n
k2 P

2k

0

p (k
s
)U(k

s
) k

s
dk

s
, (8)

where the Fourier transform of the medium inhomogeneities correlation function is given
by formula (4).

By making the appropriate calculations the following formula has been obtained for the
total scattering cross-section:

p
s
a

Se2T
"2nAk2a2 A

1!M2l`1

2l#1
(1!k~2a~2)!

1!M2l~1

k2a2(2l!1)
#

1!M2l~3

k4a4(2l#1)(2l!3)B
!2nAk2a2 A

4M2l`1

2l#1
#

1!M2l~1

k4a4 (4l2!1)B , (9)

where A"2C(l#3/2)/n1@2C (l) and M"(1#4k2a2)~1@2. This appears to be a novel result
in the literature. However, its complexity suggest that a computational approach is
appropriate for further understanding.

In Figure 4 plots of p
s
a/Se2T, are presented as functions of ka, for various values of the

parameter, l, of the von KaH rmaH n correlation function. They can be useful in the estimation
of the structure of turbulence, giving the possibility of estimating the value of the parameter
l from an experimental plot of p

s
a/Se2T as a function of ka. The authors are unaware of any

such plots in the literature, or of any published data that could be used to construct them.

5. VELOCITY OF PROPAGATION OF ACOUSTIC WAVES IN A
TURBULENT MEDIUM FOR kaA1

Using the Green function method in studies of acoustic wave propagation in randomly
inhomogeneous media one obtains the following formula for the complex e!ective wave
number [6, 7]:

k
e
"k A1#

nk

4 P
=

0

x ln A
2k#x

2k!xB
2
U(x) dx#

in2k2

2 P
2k

0

U(x) x dxB . (10)

Here k denotes the wave number in an homogeneous medium, and U (x) is the Fourier
transform of the autocorrelation function of #uctuations in the medium refractive index for



Figure 4. Total scattering cross-section per unit volume of a turbulent medium as a function of ka, for various
values of parameter l of the von KaH rmaH n correlation function, normalized to the average value of the square of
refractive index #uctuations.
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acoustic waves. In deriving the above formula the Bourret approximation [8, 17] has been
used, i.e., the e!ective wave number operator Q(r) has been approximated by the "rst term
of its series expansion:

Q(r)"k4G
0
(r, r

0
)W (r) (11)

where

G
0

(rr
r
r
0
)"(!exp (ik D r r

r~r
0
D))/(4n D r r

r~r
0
D). (12)

From equation (10) one can obtain the complex refractive index of a medium,
n"k

e
/k"n

1
#i n

2
where n

1
describes changes in the velocity of the acoustic wave, while

n
2

is connected with the attenuation of the mean acoustic "eld in a randomly
inhomogeneous medium. If the mean scale of inhomogeneities is larger than the wavelength
of acoustic radiation, using the approximation [17]

1

4
ln A

2k#x

2k!xB
2
+

x

2k

one obtains [17] from formula (10) the following equation:

n
1
"1#

n
2 P

=

0

U(i)i2 di. (13)

By using the above equation, the real part of the acoustic refractive index has been
calculated for randomly inhomogeneous media with continuous changes in the refractive
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index, for which the correlation function has a Gaussian form [12]:

W (r)"Se2T e~r2@a2, U(i)"
Se2T
8n3@2

e~i2a2@4, (14)

and also for media with discontinuous changes in the acoustic refractive index whose
#uctuations have a correlation function of the form [12]

W(r)"Se2T e~r@a, U(i)"
Se2Ta3

n2 (1#i2a2)
. (15)

In both cases one obtains the result

n
1
"1#Se2T/8. (16)

For a turbulent medium with a von KaH rmaH n correlation function of #uctuations in the
acoustic refractive index, equations (4) and (13) yield

n
1
"1#

C (l#3/2) Se2T
n1@2C (l) P

=

0

x2

(1#x2)l`3@2
dx. (17)

The integral in the above formula has been calculated by using the Euler integral of the
second kind (the so-called beta function) [18], de"ned as

B(x, y)"P
=

0

tx~1

(1#t)x`y
dt. (18)

It is easy to show that

P
=

0

x2

(1#x2)l`3@2
dx"

1

2
B A

3

2
, lB . (19)

By using the relation between Euler beta and gamma functions [18, 19]

B(x, y)"
C (x)C (y)

C(x#y)
, (20)

the following equation has been obtained:

P
=

0

x2

(1#x2)l`3@2
dx"

1

2

C (3/2)C(l)
C (3/2#l)

, (21)

and subsequently, from formulae (16) and (20)

n
1
"1#

Se2T
4n1@2

C (3/2). (22)

However, C(3
2
)"Jn/2 [19], so equation (21) leads to the formula

n
1
"1#Se2T/8, (23)

the same result as equation (16).
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6. CONCLUSIONS

The above analysis shows that the real part of the acoustic refractive index of a randomly
inhomogeneous media does not appear to depend on the form of the correlation function of
the medium inhomogeneities if the wavelength of the applied acoustic radiation is small in
comparison with the mean scale of inhomogeneities (in isotropic random media), and if the
Bourret approximation in the Green function method is used. Measurement of e!ective
speed of acoustic waves in random media makes it possible to estimate the value of the
mean-square #uctuation Se2T in the refractive index, if ka'1. It results from equation (23)
that the e!ective speed of acoustic waves in a randomly inhomogeneous medium is smaller
than that in an homogeneous one.

The di!erential scattering cross-section per unit volume of a turbulent medium (with
a von KaH rmaH n correlation function) increases with increasing ka values. If ka(1, the
increase in p (H)a/Se2T with increasing ka values is especially rapid as can be seen in Figures
1 and 2. The total scattering cross-section per unit volume for an acoustic wave of unit
volume of a turbulent medium also increases with increasing ka values. The rate of this
increase is dependent on the value of the parameter, l, of the von KaH rmaH n correlation
function. This, in principle, makes it possible to estimate the parameter l experimentally.

ACKNOWLEDGMENTS

One of the authors (RCC) is grateful to the Master and Fellows of Corpus Christi College,
Cambridge for a Visiting Fellowship during which this work was developed; to the late
Professor David Crighton for his hospitality at the Department of Applied Mathematics
and Theoretical Physics, and to Dr B. Uscinski for his valuable comments on the
manuscript.

REFERENCES

1. D. SORNETTE 1989 Acustica 67, 199}215. Acoustic waves in random media, Part I,
251}256. Acoustic waves in random media, Part 2. 68, 15}25. Acoustic waves in random media.
Part 3.

2. A. ISHIMARU 1981 Propagation and Scattering of =aves in Random Media. Moscow: Mir
(in Russian).

3. E. SOCZKIEWICZ and R. C. CHIVERS 1987 ;ltrasonics International 87 Conference Proceedings,
543}548. London: Butterworth, Heinemann. Propagation of acoustic waves in random media,
a comparison of methods and results.

4. L. A. APRESJAN and J. A. KRAWCOW 1983 ¹ransport ¹heory of Radiation. Moscow: Scienti"c
Publishers (in Russian).

5. B. J. USCINSKI 1977 ¹he Elements of =ave Propagation in Random Media. New York:
McGraw-Hill.

6. E. SOCZKIEWICZ 1987 in ;ltrasonic Methods in the Evaluation of Inhomogeneous Materials.
(A. Alippi and W. Mayer, editors), 163}173. Dordrecht: W. G. Martinus Nijho! Publishers.
Application of quantum "eld theory methods in studies of ultrasonic waves propagation in
random media.

7. C. A. CONDAT and T. R. KIRKPATRICK 1990 in Scattering and ¸ocalization of Classical=aves in
Random Media (R. Ping Sheng editor, 423}540). Singapore: World Scienti"c. Localization of
acoustic waves.

8. R. L. WEAVER 1990=ave Motion 12, 129}142. Anderson localization of ultrasound.
9. D. SORNETTE 1989 Journal of Statistical Physics 56, 669}680. Anderson localization and wave

absorption.
10. G. BAYER and T. NIEDERDRANG 1983 Physical Review ¸etters 70, 3384}3887. Weak localization

of acoustic waves in strongly scattering media.



ACOUSTIC WAVES IN TURBULENCE 205
11. E. SOCZKIEWICZ 1993 Proceedings of the 40th Open Seminar on Acoustics OSA 93, 95}98. RzeszoH w:
Polish Acoustical Society. Acoustic waves in random media, dependence of the di!usion
coe$cient of wave energy transport on statistical characteristics of a medium.

12. E. SOCZKIEWICZ and R. C. CHIVERS 1989 Acustica 68, 33}39. Scattering of ultrasonic waves by
turbulence.

13. W. I. TATARSKI 1967 Propagation of =aves in a ¹urbulent Atmosphere. Moscow: Scienti"c
Publishers (in Russian).

14. S. M. FLATTE 1979 Sound ¹ransmission through a Fluctuating Ocean. Cambridge: Cambridge
University Press.

15. V. E. DERR and C. G. LITTLE 1970 Applied Optics 9, 1976}1992. A comparison of remote sensing
of the clear atmosphere by optical, radio and acoustic radar techniques.

16. L. A. CHERNOV 1969=aves in Random Media. New York: Dover.
17. S. M. RYTOW, J. A. KRAWCOW and W. I. TATARSKI 1978 Introduction to Statistical Radiophysics.

Moscow: Scienti"c Publishers (in Russian).
18. I. S. GRADSTEIN and I. M. RYZHIK 1971 ¹ables of Integrals, Sums, Series and Products. Moscow:

Scienti"c Publishers (in Russian).
19. E. JANKE, F. EMDE and F. LOG SCH 1977 Special Functions. Moscow: Scienti"c Publishers

(in Russian).


	1. INTRODUCTION
	2. STATISTICAL CHARACTERISTICS OF RANDOMLY INHOMOGENEOUS MEDIA
	3. THE DIFFERENTIAL SCATTERING CROSS-SECTION PER UNIT VOLUME OF A RANDOM MEDIUM
	Figure 1
	Figure 2
	Figure 3

	4. THE TOTAL ACOUSTIC SCATTERING CROSS-SECTION PER UNIT VOLUME OF A TURBULENT MEDIUM
	5. VELOCITY OF PROPAGATION OF ACOUSTIC WAVES IN A TURBULENT MEDIUM FOR ka>>1
	Figure 4

	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

